A Statistical Approach to Thermo-Osmosis

Pietro Anzini, Gaia Maria Colombo, Zeno Filiberti, Alberto Parola

TPCE19 September 5th, 2019

Fluids in thermal gradients

A **bulk fluid** placed in a temperature gradient reaches a steady state characterized by

Heat flow but no mass flux

But confining surfaces make the difference

Gases: Physical Picture

- The study of thermo-osmosis in gases began in the *late 1800*, when
 Maxwell and *Reynolds* started an intense debate about the *radiometer*
- ✓ Thermo-osmosis critically depends on *particle-surface interaction*

The gas is set into motion in the *direction of the thermal gradient*

✓ By means of *kinetic theories* Maxwell predicted the slip velocity

$$v_{\infty} = \frac{3}{4} \frac{\eta}{\rho} \frac{\nabla T}{T}$$

J. Clerk Maawell

Phil. Trans. Royal Soc. (1879)

Liquids: Derjaguin's Approach

11.4. THERMO-OSMOSIS, THE MECHANOCALORIC EFFECT, AND THERMOPHORESIS

46. B. V. Derjaguin and G. P. Sidorenkov, Dokl. Akad. Nauk SSSR, 32, 622 (1941).

$$v_{\infty} = -\frac{1}{\eta} \int_{0}^{\infty} \mathrm{d}z \; z \; \Delta h(z) \; \frac{\nabla T}{T}$$

$$\Delta h(z) = h(z) - h_b$$
$$= T \frac{\partial p_{\rm T}(z)}{\partial T} \Big|_{\beta\mu} - h_b$$
Local Equilibrium)

both h(z) and $p_{T}(z)$ are *ill-defined* quantities

+Churaev, Derjaguin and Muller – Surface forces (1987)

B. V. Derjaguin

3

TPCE19 September 5th, 2019

Liquids: Experiments and Simulations

✓ Many experiments in *membranes*

✓ First *microscale observation* of thermo-osmosis [‡]

✓ MD *simulation* of the thermo-osmotic flow⁺

4

Thermo-osmosis has been theoretically investigated for a long time

BUT...

Gases

- The theoretical approach is based on *kinetic equations*
- Good agreement with experiments
- The effect is driven by the specificity of *the atom-surface scattering*
- The relevant length-scale is the mean free path

Liquids

- Derjaguin's theory is based on *macroscopic irreversible thermodynamics*
- Very few experiments/simulations
- The effect is driven by the *anisotropies of the pressure tensor* near the surface
- The relevant length-scale is the *correlation length*

Unified picture ?

STEP 0: System and Method

✓ We consider the *simplest geometry: infinite open channel*

 \checkmark We impose a *thermal gradient* along the *x*-direction

✓ We restrict to the study of the *stationary state*

Theoretical tool

Linear response theory (Kubo-Mori)

generalized to *anisotropic environments*

STEP 1: *Stationary Averages*

Local Thermal Equilibrium

If the thermodynamic variables (e.g. *temperature*) are *space dependent* the distribution function must be modified as:

The distribution function depends on the five external fields: $\beta(r)$, u(r), $\mu(r)$

STEP 1: *Stationary Averages*

Linear Response Theory

The goal is to study the **stationary flow**: the *Local Thermal Equilibrium* distribution is *not stationary!*

Hazime Mori[†] (1958): averages in *stationary states* expressed in terms of dynamical correlations at equilibrium

Example: mass current (planar geometry)

$$\langle j^{x}(z) \rangle = \rho_{0}(z) u^{x}(z) \qquad \text{Local Thermal Equilibrium}$$

$$+ \int_{0}^{\infty} dt' \int d\mathbf{r}' \langle j^{x}(\mathbf{r},t') J_{H}^{x}(\mathbf{r}') \rangle_{0} \frac{\partial_{x'}\beta(x')}{\partial_{x'}\beta(x')} \qquad \begin{array}{c} \text{coupling to} \\ energy \text{ flux} \\ \text{coupling to} \\ \text{coupling to} \\ momentum \text{ flux} \\ - \int_{0}^{\infty} dt' \int d\mathbf{r}' \langle j^{x}(\mathbf{r},t') J_{j}^{xz}(\mathbf{r}') \rangle_{0} \frac{\partial_{z'}[\beta u^{x}](z')}{\partial_{x'}[\beta \mu](x')} \qquad \begin{array}{c} \text{coupling to} \\ \text{momentum flux} \\ \text{coupling to} \\ \text{mass flux} \end{array}$$

According to LRT this expression is **exact** to linear order in $\partial_x \beta$, u^x , $\partial_x \mu$

⁺ H. Mori, Phys. Rev. **112**, 1829 (1958)

STEP 2: External Fields

Conservation Laws

Linear response theory expresses averages in terms of correlations and **external fields**:

 $\beta(r)? u(r)? \mu(r)?$ unknown!

The external fields are defined by the boundary conditions via the continuity equations

$$\partial_t (\rho(\mathbf{r}, t)) + \partial_x \langle j^x(\mathbf{r}, t) \rangle = 0$$
 mass conservation

 $\partial_{t}(J^{x}(\mathbf{r},t)) + \partial_{x}\langle J^{xx}_{j}(\mathbf{r},t) \rangle + \partial_{z} \langle J^{xz}_{j}(\mathbf{r},t) \rangle = 0$ $\partial_{t}(J^{z}(\mathbf{r},t)) + \partial_{x}\langle J^{xz}_{j}(\mathbf{r},t) \rangle + \partial_{z} \langle J^{zz}_{j}(\mathbf{r},t) \rangle = 0$

$$\partial_t \langle H(\mathbf{r},t) \rangle + \partial_x \langle J_H^x(\mathbf{r},t) \rangle = 0$$

momentum conservation

energy conservation

stationary limit

STEP 3: Velocity Profile

- ✓ *Planar geometry:* non-trivial solutions for $u^{x}(z)$ with $\partial_{x}\beta = \text{const}$ $\partial_{x}\mu = \text{const}$
- ✓ The *velocity profile* follows from the solution of the continuity equation for $j^{x}(r)$:

$$\int_{0}^{h} dz' \, \mathcal{K}(z,z') \, \partial_{z'} u^{x}(z') = \partial_{x} \beta \, \mathcal{S}(z)$$

$$\mathcal{K}(z,z') = \bar{\beta} \int_{0}^{\infty} dt' \int d\mathbf{r'}_{\perp} \left\langle J_{j}^{xz}(\mathbf{r},t') J_{j}^{xz}(\mathbf{r}') \right\rangle_{0} \qquad (generalized viscosity)$$

$$\mathcal{S}(z) = \left[\int_{h/2}^{z} dz' \, \frac{\partial p_{\mathrm{T}}(z')}{\partial \beta} \right]_{p} + \int d\mathbf{r'} \, x' \left\langle J_{j}^{xz}(\mathbf{r}) \mathcal{P}(\mathbf{r'}) \right\rangle_{0} + \left[\int_{0}^{\infty} dt' \int d\mathbf{r'} \left\langle J_{j}^{xz}(\mathbf{r},t') J_{Q}^{x}(\mathbf{r'}) \right\rangle_{0} \right]$$
Anisotropy of the tangential pressure
$$\mathcal{P}(\mathbf{r}) = h_{m} \rho(\mathbf{r}) - \mathcal{H}(\mathbf{r})$$

$$\mathcal{D}(z) = \int_{0}^{\infty} dt' \int d\mathbf{r'} \left\langle J_{j}^{xz}(\mathbf{r},t') J_{Q}^{x}(\mathbf{r'}) \right\rangle_{0}$$

In **bulk**:
$$S(z) = 0 \longrightarrow u^{x}(z) = 0$$

Approximations: *Liquids*

- ✓ If we **assume** that in liquids
 - static and dynamic correlations can be evaluated in bulk
 - dynamic correlations are short-ranged

$$S(z) = \frac{\partial}{\partial \beta} \Big|_{p} \int_{h/2}^{z} dz' p_{T}(z')$$
$$K(z, z') = \eta \, \delta(z - z')$$

$$u^{x}(z) = -\frac{\partial_{x}T}{\eta} \left. \frac{\partial}{\partial T} \right|_{p} \int_{0}^{h/2} dz' \operatorname{Min}(z, z') \left[p_{\mathrm{T}}(z') - p \right]$$

Agreement with Derjaguin's approach (based on nonequilibrium thermodynamics)

✓ It is possible to give a *rough* estimate of the slip velocity:

Ganti, Liu and Frenkel, PRL 119, 038002 (2017)

Approximations: *Gases*

In (almost) ideal gases the pressure tensor is isotropic also near the surface

$$p_{\rm T} = p_{\rm N} = p \qquad \longrightarrow \qquad \frac{\partial p_{\rm T}(z')}{\partial \beta} \bigg|_p = 0$$

The only source term comes from *dynamical correlations* at equilibrium

$$S(z) = \int_0^\infty \mathrm{d}t' \int \mathrm{d}\mathbf{r}' \left\langle J_j^{xz}(\mathbf{r},t') J_Q^x(\mathbf{r}') \right\rangle_0$$

Assuming that after the impact the *x*-component of the particle's momentum is *completely uncorrelated* (i.e. *exchange* of *momentum* with the surface)

$$\vec{p}_{out}$$

$$v_{\infty} = \frac{3}{4} \frac{\eta}{\rho} \frac{\partial_{\chi} T}{T}$$

$$u^x \approx 10 \ \mu m/s$$

(*parrallel* to the gradient) for $\partial_x T \sim 10 \text{ deg/cm}$ $p = p_{atm}$

Conclusions

- Linear response theory provides a natural framework for a *microscopic quantitative* description of the thermo-osmotic flow
- Our results are *exact* to the first order in the fields
- The emerging *picture* is *more complex than expected* on the basis of the existing approaches (*kinetic theory/irreversible thermodynamics*)
- The extent of the phenomenon depends on the behavior of *dynamical correlations* (transport coefficients) near the surface
- The *scattering processes* at the confining surface plays a key role, at least in the *rarefied limit*
- A quantitative investigation in liquids requires the evaluation of the tangential pressure. MD and DFT calculations are in progress

Thank You For Your Attention

P. Anzini, G. M. Colombo, Z. Filiberti, and A. Parola, Phys. Rev. Lett. 123, 028002